Python 模块 Keras 支持 TensorFlow、CNTK 和 Theano 等多个深度学习框架,为研究者提供了简洁易用的 API 接口,在工业和学术界应用广泛。
Python Keras 安装
1 | pip install keras |
更改 Keras 配置文件 ~/.keras/keras.json 将后台系统设置为 Theano
1 | # change backend to theano |
用 Keras 实现一个简单的神经网络
import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Activation
from keras.optimizers import SGD
# create train data using Numpy
# x is the feature matrix and y is the label vector
x_train = np.array([[0, 0],
[0, 1],
[1, 0],
[1, 1]])
y_train = np.array([[0],
[1],
[1],
[0]])
# load NN model
model = Sequential()
# specify the number of neurons in hidden layer
num_neurons = 10
# use Dense to create a fully connected feed forward network
model.add(Dense(num_neurons, input_dim=2))
# specify the activation function for the hidden layer
model.add(Activation('tanh'))
# create the output layer
model.add(Dense(1))
model.add(Activation('sigmoid'))
print(model.summary())
# specify the learning rate for the stochastic gradient descent algorithm
sgd = SGD(lr=0.1)
# specify the loss function
model.compile(loss='binary_crossentropy', optimizer=sgd, metrics=['accuracy'])
# train the model and learn all the parameters
model.fit(x_train, y_train, epochs=1000)